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Elastic constants in a pseudomolecular approach for a mixed Maier-Saupe
and Nehring-Saupe interaction law

L. R. Evangelista, I. Hibler, and H. Mukai
Departamento de Fı´sica, Universidade Estadual de Maringa´, Avenida Colombo 5790, Maringa´, Paraná, Brazil

~Received 1 December 1997!

A pseudomolecular approach is employed to calculate the elastic constants of a nematic liquid crystal by
assuming an interaction volume of ellipsoidal shape. We consider a special kind of mixed Maier-Saupe and
Nehring-Saupe interaction law characterized by a mixing factore. To e50 corresponds the Maier-Saupe law,
whereas to the casee51 corresponds the induced dipole-induced dipole interaction law. The dependence of
the elastic constants on the eccentricity of the molecular volume shape and on the mixing factor is investigated
by means of a numerical analysis. We show that, for particular values of the eccentricity, theK11 ~splay! and
K33 ~bend! elastic constants become negative for some values of the mixing factor. Moreover, the nonmono-
tonic behavior of the splay-bend elastic constant with respect to the mixing factor, already reported in a
spherical approximation for the interaction volume, is also observed. This result reinforces the indication that
the subsurface deformations, if any, are not only due to the splay-bend term.@S1063-651X~98!00509-1#

PACS number~s!: 61.30.Gd, 61.30.Cz
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I. INTRODUCTION

The pseudomolecular approach to calculate the bulk e
tic constants in nematic liquid crystals~NLC! is an approxi-
mate technique to determine the macroscopic propertie
the system from the intermolecular interaction giving rise
the nematic phase@1#. The basic assumptions of the a
proach can be summarized as follows@2–4#.

Let U(aW ,aW 8,rW) be the intermolecular interaction energ
between the molecules placed inRW and RW 8, such thatrW

5RW 82RW , and whose long molecular axes are, respectiv
denoted byaW andaW 8. This interaction energy is supposed
be different from zero in a region defined byR0<R<RN ,
where the lower cutoff,R0 , is of the order of the molecula
dimension whereas the upper cutoff,RN , defines the maxi-
mum dimension of the interaction volume. It is determin
by comparing theU(aW ,aW 8,rWN) with the thermal energyKBT,
whereKB is the Boltzmann constant andT is the absolute
temperature. Anyway,RN is of the order of a few molecula
dimensions, and the model is expected to be insensibl
RN , in such a way that, at the end of the calculation,
limit RN→` could be performed. Furthermore, one assum
perfect nematic order. This means that the scalar order
rameter of the nematic phaseS51, which is equivalent to
assuming that the orientational entropy of the system is z
In this hypothesisaW [nW . The interaction energy between tw
small volume elementsdv and dv8, containing dN

5r(RW )dv and dN85r(RW 8)dv8 molecules, respectively, in
RW andRW 8 is given by

d2U~nW ,nW 8,rW !5U~nW ,nW 8,rW !r~RW !dvr~RW 8!dv8

5g~nW ,nW 8,rW !dvdv8, ~1!

where r(RW )5r(RW 8)5r is the density which will be sup
posed constant. Henceg(nW ,nW 8,rW)5r2U(nW ,nW 8,rW).
PRE 581063-651X/98/58~3!/3245~6!/$15.00
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In the elastic approximation, it is supposed thatnW changes
slowly with RW . Consequently we haveunW 2nW 8u5udnW u!1.
Therefore it is possible to expandg(nW ,nW 1dnW ,rW) in power
series ofdnW . It is assumed also that this series has unifo
convergence, which is not always the case. In fact, this
indicative that the pseudomolecular method has severe l
tations in its applicability when this condition is not fulfille
@4#. In the second order one obtains

g~nW ,nW 8,rW !5g~nW ,nW ,rW !1qidni1
1

2
qi j dnidnj1•••, ~2!

where

qi5S ]g

]ni8
D

nW 85nW

and qi j 5S ]2g

]ni8]nj8
D

nW 85nW

, ~3!

where the derivatives are evaluated on the reference state
the summation convention is assumed henceforth.

To obtain the elastic energy density it is necessary to
panddni5dni(RW ,RW 8) in power series ofxi , which are the
Cartesian components of therW. In the second order one ob
tains

dni5ni , j xj1
1

2
ni , jkxjxk1•••, ~4!

with the derivatives evaluated inRW . Substitution of Eq.~4!
into Eq. ~3! yields

g~nW ,nW 8,rW !5g~nW ,nW ,rW !1qini ,kxk

1
1

2
~qini ,kl1qi j ni ,knj ,l !xkxl . ~5!
3245 © 1998 The American Physical Society
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Finally, the last assumption of the method is the me
field approximation, which implies a definition of the tot
energy of the NLC sample as

F5
1

2Ev
E

v8
g~nW ,nW 8,rW ! dvdv85E

v
f dv, ~6!

where the elastic energy density is given by

f 5
1

2Ev8
g~nW ,nW 8,rW ! dv8. ~7!

After the substitution of Eq.~5! into Eq. ~7! one obtains

f 5 f 01Likni ,k1Ni jkni , jk1Mi jkmni ,knj ,m , ~8!

where we have introduced the elastic tensors

Lik5
1

2Ev8
qiukrdv8, ~9!

Ni jk5
1

4Ev8
qiujukr

2dv8, ~10!

and

Mi jkm5
1

4Ev8
qi j ukumr 2dv8. ~11!

Furthermore, the uniform part of the elastic energy dens
i.e., the elastic energy density of the reference state, is g
by

f 05
1

2Ev8
g~nW ,nW ,rW !dv8. ~12!

In the above expressions,uW 5rW/r , and hencexk5ukr . The
integrations are performed over the interaction volume.
simplicity, in this kind of calculation it is usual to consider
spherical volume. However, the molecules are rodlike a
R0 is not well defined. For this reason it is also convenien
consider another kind of interaction volume such as, for
stance, the ellipsoidal one@5#.

II. ELASTIC CONSTANTS AND INTERACTION LAW

In this paper we will consider an interaction volume
ellipsoidal shape, i.e., we suppose thatg(nW ,nW 8,rW) is different
from zero in the region limited by two similar ellipsoids
whose inner part coincides with the molecular volume, a
the outer part is defined by the long-range part of the in
molecular interaction. For simplicity, the two ellipsoids a
supposed to be similar, having the same eccentricity. T
are also supposed to be ellipsoids of revolution aroundnW . If
the semiaxes are indicated bya and b, the eccentricity is
defined as

e512~ao /bo!2512~a/b!2, ~13!

where the subscripto indicates the inner~molecular! volume
and a,b refer to the outer volume. One observes that
dimensions of the outer part do not play a crucial role in
n
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elastic constants we are calculating. In a reference fram
which the equation of the ellipsoid is given by

x21y2

a2
1

z2

b2
51, ~14!

the directornW coincides with the long molecular axis. I
spherical coordinates,

x5r sinu cosf, y5r sinu sinf, and z5r cosu,
~15!

and with the help of Eq.~13!, we can rewrite Eq.~14! in the
form

r 0~u!5R05
ao

A12e cos2u
and r N~u!5RN5

a

A12e cos2u
,

~16!

respectively, for the inner and outer ellipsoids.
Let us focus our attention now on the interaction la

Among the intermolecular interaction energies giving rise
the NLC phase, the simplest one is the Maier-Saupe law@6#
written as

gMS5r2UMS52
CMS

r 6
~aW •aW 8!252

CMS

r 6
~nW •nW 8!2, ~17!

whereCMS5r2C is a positive constant, and we are assum
perfect nematic order. For this kind of interaction, a detai
analysis of surface and bulk elastic properties has been
formed in a pseudomolecular approach for the ellipsoi
approximation@5#. Another intermolecular interaction take
into account the fact that the molecules forming NLC pha
are polarizable. Therefore the induced dipoles play a role
the stability of the NLC phase. This fact is expressed
terms of the Nehring-Saupe interaction@1#, which, in the
hypotheses we are considering, is written as

gNS5r2UNS52
CNS

r 6
@nW •nW 823~uW •uW 8!~uW •nW !#2, ~18!

with CNS5r2^p2(t)&/2 a positive constant andp(t) the di-
polar moment of the molecules. For this interaction, t
pseudomolecular approach has been applied for an inte
tion volume of spherical shape to determine the bulk@2,3#
and surface elastic properties@7#. Now, we will consider an
intermolecular interaction in the mixed form@8,9#

g~nW ,nW 8,rW !52
C

r 6
e2r /l @nW •nW 823e~nW •uW !~nW 8•uW !#2,

~19!

where we have introduced a mixing parametere such that for
e50, g5gMS whereas fore51, g5gNS. In Eq. ~19! we
have also introduced a screening lengthl to take into ac-
count the short-range intermolecular forces. Note that fol
→` the law is a long-range one. However, a theory of el
ticity may be formulated only for intermolecular forces
short interaction range. This means that the interaction
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relevant in a region very small with respect to the scale o
which the spatial variation of the macroscopic order ta
place. Consequently,l is expected to be of the order of
few molecular sizes. For a material whose intermolecu
energy has a quadrupolar symmetryl plays a crucial role. It
is possible to show that forl→` all the elastic constant
vanish, whereas for the case of finitel, K115K33 is negative
@13#. However, for the interaction law~19! the results are no
affected in a significant manner by changing the values ol,
as we will discuss later.

In order to calculate the elastic constants, let us evalu
qi andqi j , as given by Eq.~3!. We easily obtain

qi522J~r !@123e~nW •uW !2#@ni23eui~nW •uW !#,
~20!

qi j 522J~r !@ni23eui~nW •uW !#@nj23euj~nW •uW !#,

where

J~r !5
C

r 6
e2r /l. ~21!

It is easy to show that the term in Eq.~8! connected to the
second-rank tensor given by Eq.~9! does not contribute to
the elastic energy density, as expected, because it is
nected to the linear term in the deformation tensor, and
the bulk, the ground state is the undeformed one. One
pects that this tensor exists in the bulk only for choleste
liquid crystals. For what concerns the third-rank tensor
have

Ni jk5
1

4Ev8
r 2J~r !@123e~nW •uW !2#

3@ni23eui~nW •uW !#ujukdv85niBjk1Ai jk , ~22!

where

Bjk52
1

2Ev8
r 2J~r !@123e~nW •uW !2#ujukdv, ~23!

and

Ai jk5
3

2
eE

v8
r 2J~r !@123e ~nW •uW !2#~nW •uW !uiujukdv8.

~24!

Finally, the fourth-rank tensor is rewritten as

Mi jkm52
1

2Ev8
r 2J~r !@ni23eui~nW •uW !#

3@nj23euj~nW •uW !#ukumdv8. ~25!

Consequently, the elastic energy density given by Eq.~8! is
conveniently rewritten in the form

f 5Ai jkni , jk1Bjknini , jk1Mi jkmni ,knj ,m . ~26!

Before evaluating the integrations over the interaction v
ume, it is convenient to decompose the tensorsA, B, andM
r
s

r

te

n-
in
x-
c
e

l-

in terms of the unit tensord andnW , which are the elements o
symmetry characterizing the NLC phase. We have

Ai jk5A1ninjnk1A2~nid jk1njd ik1nkd i j !, ~27!

Bi j 5B1ninj1B2d i j , ~28!

and

Mi jkm5Mkmi j5M1ninjnknm

1M3~dkmd i j 1dkidm j1dk jdmi!

1M2~nknmd i j 1nknidm j1nknjdmi

1nmnjdki1nmnidk j!. ~29!

From Eq.~27! one easily deduces that

A15
1

2
~5ninknjAi jk23niAi j j !,

~30!

A25
1

2
~niAi j j 2ninknjAi jk !,

whereas from Eq.~28!, by operating in the same way, on
obtains

B15
1

2
~3ninjBi j 2Bii !,

~31!

B25
1

2
~Bii 2ninjBi j !.

Finally, from Eq.~29! we obtain

M25
1

8
~6ninjM i jkk25nknmninjM i jkm2Mkkii!,

~32!

M35
1

8
~nknmninjM i jkm1Miikk22ninjM i jkk!.

In order to write the elastic energy density one has to ca
late the terms

Ai jkni , jk523A2~div nW !22A2~nW •curlnW !2

2~A11A2!~nW 3curl nW !2

1A2div~nW div nW 1nW 3curl nW !12A2div~nW div nW !,

Bkmnini ,km52B2~div nW !22B2~nW •curl nW !2

2~B11B2!~nW 3curl nW !2

1B2div~nW div nW 1nW 3curl nW !, ~33!

Mkmi jni ,knj ,m53M3~div nW !22M3~nW •curl nW !2

2~M21M3!~nW 3curl nW !2

22M3div~nW div nW 1nW 3curl nW !,
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To rewrite the elastic energy density given by Eq.~26! we
add the expressions appearing in Eq.~33! to obtain

f 5
1

2
@K11~div nW !21K22~nW •curl nW !2

1K33~nW 3curl nW !21K13div~nW div nW !

2~K221K24!div~nW div nW 1nW 3curl nW !#, ~34!

where

K1152~23A222B213M3!,

K2252~2A22B21M3!,
~35!

K3352~2A12A22B12B21M21M3!,

K1352A2 and K221K2452~A21B222M3!.

This completes the tool to calculate the elastic constant
the pseudomolecular approach we are considering. It is
sufficient to perform the integrations indicated in Eqs.~22!–
~25! over the interaction volume of ellipsoidal shape.

III. NUMERICAL RESULTS

Let us now present the results of the numerical calcu
tions employed to study the dependence of the elastic c
stants on the eccentricity and on the mixing factore. To
perform the integrations to evaluate the elements of the e
tic tensors in Eqs.~22!–~25! we choose thez axis of the
coordinate system alongnW . In spherical coordinates this im
plies tonW •uW 5cosu and

u15sinu cosf, u25sinu sinf, u35cosu. ~36!

The following integral is relevant:

I ~e,u!5E
r 0~u!

r N~u!

J~r !r 4dr

52CE
r 0~u!

r N~u!e2r /l

r 2
dr

52
e2r 0~u!/l

r 0~u!
1

e2r N~u!/l

r N~u!

2
1

l FEiS 2r 0~u!

l D2EiS 2r N~u!

l D G , ~37!

where Ei(x) is the exponential integral@10#. The remaining
integrations can be numerically performed and have the g
eral form

Bjk52
C

2E0

2pE
0

p

I ~e,u!@123e cos2u#ujukdu df,

~38!

Ai jk5
3C

2
eE

0

2pE
0

p

I ~e,u!@123e cos2u#cosuuiujukdu df,

~39!
in
w

-
n-

s-

n-

and

Mi jkm52
C

2E0

2pE
0

p

I ~e,u!@ni23e cosuui #

3@nj23e cosuuj #ukumdu df. ~40!

From the above expressions it is possible to calculate
coefficients A1, A2, B1, B2, M2, and M3. Consequently,
from the expressions~35! we obtain the trend of the elasti
constants in the general formKi j (e,e) in units of the positive
constantC.

In Fig. 1 the behavior ofK11, K22 and K33, K13 and
K221K24 is shown as a function of the mixing factore for
the casee50 ~spherical approximation!. Several features o
this figure deserve some comments. First of all, we obse
that whene50, which corresponds to the Maier-Saupe la
in the spherical approximation for the interaction volum
K115K225K33 andK1350, as expected. On the other han
for e50 but for e51, which corresponds to the Nehring
Saupe interaction law in the spherical approximation, we
tain the well-known result thatK115K33,K22. Further-
more, for this kind of interaction lawK13Þ0 @3#. Notice that
the trend ofK13 as a function ofe is nonmonotonic. In fact,
K13 starts from zero~for e50, i.e., Maier-Saupe interactio
law! and becomes zero again fore57/9 @4#.

However, for eÞ0 the three bulk elastic constants ca
become distinct. One should consider that for typical rodl
NLC molecules,e'0.9– 0.95@11#. However the effective
molecular eccentricity is different from the geometrical on
This is probably due to the presence of a hard core in wh
the origin of the intermolecular interaction is localized. A

FIG. 1. Elastic constants of a nematic liquid crystal vs the m
ing parametere for e50 ~spherical approximation!. The splay-bend
elastic constantK1350 for e57/9.
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cording to this point of view the soft tails@11# of the nematic
molecules do not contribute to the interactions giving rise
the mesophase. Further, in the following analysis one c
siders as representative eccentricities for the calculatio
namely,e50.60 ~Fig. 2!, which is closer to these real sys
tems, ande50.96 ~Fig. 3!, which corresponds to a relation
b55a, i.e., a very long molecule.

In Fig. 2 we observe again a known limit: whene50 we
observe thatK115K22.K33 @5#. There are, however, three
new features arising with the variation ofe: K13 again pre-
sents a nonmonotonic behavior and becomes negative fe
'0.9. Note that, in this case, fore51, i.e., the Nehring-
Saupe interaction,K13 is still negative. The more drastic be
havior, however, regards the bulk elastic constantsK11 and
K33 which become negative for similar values ofe. Since the
elastic energy density has to be a positive definite quadr
form, this fact implies that for some particular values of th
eccentricity~which is responsible for the ‘‘geometrical an
isotropy’’! and of the mixing factor~which is, as stressed
before, responsible for the anisotropic part of the interm
lecular interaction energy! the nematic phase is not favored
Then, the molecules, for an interaction law of this kind, ha
no tendency to align along a common direction, as is
quired to form the NLC phase. This situation has been fou
in this context when the considered intermolecular intera
tion law is the quadrupolar one@13#. Finally, one observes
that for a ‘‘balanced’’ mixing of the two interaction laws
like, for instance, fore50.5, the three bulk elastic constan
are different. This is a welcome result since from the expe
mental point of view the common situation is the one
which Kii ,i 51,2,3 are distinct@12#.

FIG. 2. The same as in Fig. 1 but fore50.60. The bulk elastic
constants of splayK11 and bendK33 become negative fore'0.9.
The nonmonotonic behavior ofK13 is still present for this represen
tative eccentricity.
o
n-
s,

r

tic

-

e
-
d
-

i-

In Fig. 3 we again observe that the two bulk elastic co
stants become negative fore'0.9. However, theK13 is
never negative for very long molecules. In all these figu
the trend ofK221K24 is the expected one: it is an approx
mated linearly decreasing function ofe.

Another significant situation is depicted in Fig. 4 whic
exhibits the trend of the elastic constants vs the eccentri
of the interaction volume, i.e., it corresponds to the case
Nehring-Saupe interaction in the ellipsoidal approximatio
We still have that whene50 the well-known results for the
spherical approximation are recovered@3#. But two elastic
constantsK11 andK33 become negative. This result indicate
that the increasing in the anisotropy of the molecular volu
works as a destabilizing effect for the nematic phase w
the interaction is of the induced dipole-induced dipole typ

The general behavior we have presented above refer
the casel.a0, wherea0 is a typical molecular dimension
@see Eq.~13!#. But the global picture is not drastically af
fected by changingl. Let us analyze, in particular, the limi
l→`. The behavior of the elastic constants with respect te
is basically the same as the one forl finite in the case de-
picted in Fig. 1~i.e., the spherical approximation!. For the
case of the Nehring-Saupe law (e51), depicted in Fig. 4,
there are no qualitative changes in the behavior of the ela
constants and the bulk constantsK11 and K33 still become
negative, but now fore.0.7. Fore50.96, in reference to
Fig. 3, these two bulk constants become negative foe
.0.8 but alsoK13 becomes negative. The most significa
changes refer to the casee50.6. While in the case of Fig. 2
K11 andK33 become negative, in the limit ofl→` they are

FIG. 3. The same as in Fig. 1 fore50.96. This value of the
eccentricity corresponds to a relationb55a between the major and
the minor axes of the ellipsoid representing the molecular volu
The bulk elastic constantsK11 andK33 can become negative as i
the preceding case of Fig. 2.
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always positive for any value ofe. Only K13 becomes nega
tive for e.0.8. Finally, let us stress thatK22 andK221K24
are not significantly changed in this limit. These results
dicate that for this kind of interaction law, differently from
the case of quadrupolar interaction@13#, the screening of the
potential represented byl finite is not crucial. This is not
surprising since the interaction law we are analyzing dec
as r 26.

FIG. 4. Elastic constants of a NLC vs the eccentricitye for e
51.0 ~Nehring-Saupe interaction law!. Note that also for this situ-
ation the bulk elastic constants of splay and bend become nega
, J
-

s

IV. CONCLUDING REMARKS

We have shown that new features arise in the behavio
the elastic constants of a NLC when an anisotropic inter
tion volume is introduced. The calculations were perform
by considering a special kind of mixed interaction law with
parametere accounting for the anisotropic part of the inte
action law. Therefore this kind of analysis deals with tw
origins for the anisotropy of the system: one coming fro
the natural anisotropic molecular form and the other o
from the anisotropy in the interaction. The analysis reve
the possibility that for the bulk~1! the elastic constants ca
become negative and in this sense the nematic phase is
favored;~2! it is possible to obtain the theoretical result th
the elastic constants can be different for a representa
value of the molecular anisotropy, which is close to the e
perimental situation.

For what concerns the behavior of the splay-bend ela
constant,K13, one observes again that for some value oe
this elastic constant can be zero. Then, the origin of the s
surface deformation, if any, must be sought in anot
source. It is not due only to the presence of this term.
stressed before, this result was already obtained in the sp
cal approximation, but here it is reinforced for the ellipsoid
approximation.

The calculations were numerically performed and, as
pected, the limitRN→` can be performed at the end of th
calculations. The outer dimension of the interaction volu
does not affect the central results.
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