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Elastic constants in a pseudomolecular approach for a mixed Maier-Saupe
and Nehring-Saupe interaction law
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A pseudomolecular approach is employed to calculate the elastic constants of a nematic liquid crystal by
assuming an interaction volume of ellipsoidal shape. We consider a special kind of mixed Maier-Saupe and
Nehring-Saupe interaction law characterized by a mixing faetdo e=0 corresponds the Maier-Saupe law,
whereas to the case=1 corresponds the induced dipole-induced dipole interaction law. The dependence of
the elastic constants on the eccentricity of the molecular volume shape and on the mixing factor is investigated
by means of a numerical analysis. We show that, for particular values of the eccentrici§,tteplay and
K33 (bend elastic constants become negative for some values of the mixing factor. Moreover, the nonmono-
tonic behavior of the splay-bend elastic constant with respect to the mixing factor, already reported in a
spherical approximation for the interaction volume, is also observed. This result reinforces the indication that
the subsurface deformations, if any, are not only due to the splay-bend[&t663-651%98)00509-1

PACS numbsg(s): 61.30.Gd, 61.30.Cz

I INTRODUCTION In the elastic approximation, it is supposed thathanges

slowly with R. Consequently we havin—n'|=|sn|<1.

The pseudomolecular approach to calculate the bulk eIasI:h ; . ble t SRS |

tic constants in nematic liquid crystalsILC) is an approxi- gre ore it1s .p053| et exparg(n,n. n,_r) n powgr
mate technique to determine the macroscopic properties §eries ofén. It is assumed also that this series has uniform
the system from the intermolecular interaction giving rise toconvergence, which is not always the case. In fact, this is
the nematic phasél] The basic assumptions of the ap- indicative that the pseudomolecu|al’ method has severe limi-
proach can be summarized as fo”o[/%_{l tations in its appllcablllty when this condition is not fulfilled

Let U(a,a’,r) be the intermolecular interaction energy [4]. In the second order one obtains

between the molecules placed R and R’, such thatr L
=R’ —R, and whose long molecular axes are, respectively,  g(n,n’,r)=g(n,n,r)+q;on;+ SGjonan+-o, (2)
denoted b)é anda’. This interaction energy is supposed to
be different from zero in a region defined By<R<Ry,
where the lower cutoffR,, is of the order of the molecular Where
dimension whereas the upper cutd®,, defines the maxi-
mum dimension of the interaction volume. It is determined ag 92g
ai= and di;= ) ©)
he )

by comparing theU(ﬁ,ﬁ’ ,FN) with the thermal energigT,
whereKg is the Boltzmann constant and is the absolute
temperature. AnywayRy, is of the order of a few molecular
dimensions, and the model is expected to be insensible tohere the derivatives are evaluated on the reference state and
Ry, in such a way that, at the end of the calculation, thethe summation convention is assumed henceforth.

limit Ry—° could be performed. Furthermore, one assumes To obtain the elastic energy density it is necessary to ex-
perfect nematic order. This means that the scalar order pgrand sn;= 5ni(§,|§') in power series ok;, which are the

rameter of the nematic phass=1, which is equivalent 10 cartesian components of tiie In the second order one ob-
assuming that the orientational entropy of the system is zerq,;s

In this hypothesiézﬁ . The interaction energy between two
small volume elementsdv and dv’, containing dN 1

=p(R)dv anddN’=p(R’)dv’ molecules, respectively, in SN =Ny X 5 M XXt (4)
R andR’ is given by

an; anj

oy 3 2y . -, , with the derivatives evaluated iR. Substitution of Eq(4)
d<U(n,n’,r)=U(n,n’,r)p(R)dvp(R")dv into Eq. (3) yields

=g(n,n’,r)dvdv’, (1) . e
g(n,n’,r)=g(n,n,r)+aq;n; X
where p(R)=p(R')=p is the density which will be sup-

1
posed constant. Henegn,n’,r)=p2U(n,n’.r). 2 (M G 1% ®
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Finally, the last assumption of the method is the mearelastic constants we are calculating. In a reference frame in
field approximation, which implies a definition of the total which the equation of the ellipsoid is given by

energy of the NLC sample as
1 ..
F=§f ,g(n,n’,r)dvdv'=ffdv, (6)
where the elastic energy density is given by
1 .
f:zf, g(n,n’,r)ydv’. (7)

After the substitution of Eq(5) into Eq.(7) one obtains
f="fo+Likni k+ Nijini jk+ Mijkmni kN m. (8)

where we have introduced the elastic tensors

1
Likzif’qiukrdv’, 9
1 2 ’
Nijk:Zf /qujUkr dov’, (10)
and
1 2 '
Miikm:ZJ GijUU? dov’. (11

2 2 2
X°+ys  z
2 + 221’
a b

(14
the directorn coincides with the long molecular axis. In
spherical coordinates,

and z=r cosb,
(15

X=rsinf#cos¢, Yy=rsindsing,

and with the help of Eq(13), we can rewrite Eq(14) in the
form

ro(0)=Ro= and ry(0)=Ry=

a
Ji—ecofs’

(16)

a'O
J1—e cosd

respectively, for the inner and outer ellipsoids.

Let us focus our attention now on the interaction law.
Among the intermolecular interaction energies giving rise to
the NLC phase, the simplest one is the Maier-Saupe[@w
written as

Cuvs - -, Cus, - -,
gMS:PZUMS:_r_G(a'a )2=—r—6(ﬂ~n )2, (17)

Furthermore, the uniform part of the elastic energy densityyynerec,,s= p2C is a positive constant, and we are assuming
i.e., the elastic energy density of the reference state, is giveferfect nematic order. For this kind of interaction, a detailed

by
1 > >
f0=§J’g(n,n,r)dv’. (12

In the above expressiong=r/r, and hencex=u,r. The

analysis of surface and bulk elastic properties has been per-
formed in a pseudomolecular approach for the ellipsoidal
approximation[5]. Another intermolecular interaction takes
into account the fact that the molecules forming NLC phases
are polarizable. Therefore the induced dipoles play a role in
the stability of the NLC phase. This fact is expressed in

integrations are performed over the interaction volume. Foterms of the Nehring-Saupe interactiph], which, in the
simplicity, in this kind of calculation it is usual to consider a hypotheses we are Considering, is written as

spherical volume. However, the molecules are rodlike and

Ry is not well defined. For this reason it is also convenient to
consider another kind of interaction volume such as, for in-

stance, the ellipsoidal ori&].

II. ELASTIC CONSTANTS AND INTERACTION LAW

Cns, - - TR
gNs:PZUNs:_r_e[n'n’_3(U‘U’)(U'n)]2' (18

with Cys=p?(p?(t))/2 a positive constant anpl(t) the di-
polar moment of the molecules. For this interaction, the

In this paper we will consider an interaction volume of Pseudomolecular approach has been applied for an interac-

ellipsoidal shape, i.e., we suppose thén,n’,r) is different

from zero in the region limited by two similar ellipsoids,

tion volume of spherical shape to determine the H2}3]
and surface elastic propertigg]. Now, we will consider an

whose inner part coincides with the molecular volume, andntermolecular interaction in the mixed forf8, 9]

the outer part is defined by the long-range part of the inter-

molecular interactiori. For simplicity, the two eIIipslolids are g(ﬁ,ﬁ’,F)z _ Eefr/)\[ﬁ_ R’ —3e(n- G)(ﬁ’~ﬁ)]2,
supposed to be similar, having the same eccentricity. They r6

are also supposed to be ellipsoids of revolution arountf 19
the semiaxes are indicated layand b, the eccentricity is

defined as where we have introduced a mixing parametsuch that for

€=0, g=gus Whereas fore=1, g=gns. In Eq. (19) we
have also introduced a screening lengtho take into ac-
count the short-range intermolecular forces. Note thatfor
where the subscripi indicates the innefmoleculay volume  — o the law is a long-range one. However, a theory of elas-
and a,b refer to the outer volume. One observes that theticity may be formulated only for intermolecular forces of
dimensions of the outer part do not play a crucial role in theshort interaction range. This means that the interaction is

e=1-(a,/by)?>=1—(a/b)?, (13
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relevant in a region very small with respect to the scale ovefn terms of the unit tensaé andn, which are the elements of
which the spatial variation of the macroscopic order takesymmetry characterizing the NLC phase. We have
place. Consequently, is expected to be of the order of a

few molecular sizes. For a material whose intermolecular Aijic=Aninin+Ax(N; i+ nj S + i dij ), (27)
energy has a quadrupolar symmeiryplays a crucial role. It
is possible to show that fox —« all the elastic constants Bij=B1ninj+ By, (28

vanish, whereas for the case of finke K;,=K33is negative
[13]. However, for the interaction lad9) the results are not and
affected in a significant manner by changing the values, of
as we will discuss later. Mijkm=Mymij=Mnin;nny,
In order to calculate the elastic constants,_let us evaluate + M (S + S i+ SO
q; andg;;, as given by Eq(3). We easily obtain
.. .. +Mz(nknméij+nkni5mj+nknj5mi
gi=—2J(r)[1—3&(n-u)?][n;—3eu;(n-0)],

(20 + NN S+ N 6j) - (29
gy =—23(r)[n;—3eu;(n-u)J[n; - 3eu;(n-w)], From Eq.(27) one easily deduces that
where 1
Ar=5 (SN Aijic = 3niAjj; ),
J(r)= %e—f“. (21) (30
r Az=5 (MA;; —ningnjAije),

2
It is easy to show that the term in E() connected to the

second-rgnk tensor given by E() does not contrlbu_te_ 10 whereas from Eq(28), by operating in the same way, one
the elastic energy density, as expected, because it is cogptains

nected to the linear term in the deformation tensor, and, in

the bulk, the ground state is the undeformed one. One ex- 1
pects that this tensor exists in the bulk only for cholesteric B1=5(3nin;Bi; = Bii),
liquid crystals. For what concerns the third-rank tensor we (31)
have 1
1 BZZE(Bii_ninjBij)-
Nijkzzf,rZJ(r)[l—Se(ﬁﬂ)z]
v Finally, from Eq.(29) we obtain
X[ni_seui(ﬁ'ﬁ)]UjdeU’:niBjk+Aijk, (22) 1
M == (6Nnin;Mjjic— 5NN mning Mijem — M i)
where 8
(32
1 5 s >y 1
B]k:_i ’r J(r)[1_36(nu) ]Ujukdv, (23) Mgzg(nknmnianijkm+Miikk_znianijkk).
U
and In order to write the elastic energy density one has to calcu-

late the terms

3 e e
ey = — 2 —_ . 2 . I 4 - - -
Ak 2eJU’r J(N[1-3e(n-u)“](n-u)uu;udo’. A o= — 3Ao(div 2= Ay(R- curli)?

(24) - R
—(A;+A,)(nxcurl n)?
Finally, the fourth-rank tensor is rewritten as . .. . . .
+A,div(n div n+nXcurl n) +2A,div(n div n),
1 N
. = — — 2 . —_ . . - - >
Mijicm valr J(N)ni=3eui(n-w)] BimiNi km= — Ba(div n)2—B,(n-curl n)2
X[n;—3eu;(n-u)Juugdo’. (25) —(By+By)(nXcurl n)?
Consequently, the elastic energy density given by Bpis +B,div(n div n+nxcurln), (33
conveniently rewritten in the form
Mkmijniyknj’m:3M3(diV 6)2_ Mg(ﬁ curl ﬁ)2
f=Aijn; jk+ Bining i+ Mijkmni kNj m- (26)

—(M,+Mg)(nxcurl n)2
Before evaluating the integrations over the interaction vol- R L R
ume, it is convenient to decompose the tengors, andM —2Madiv(n div n+nXcurl n),
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To rewrite the elastic energy density given by E26) we
add the expressions appearing in E3p) to obtain

1 - - -
f= E[Kn(diV n)2+Kyy(n-curl n)2

+Kag(nxcurl n)2+Kydiv(n div n)

—(Kypt+ Kypdiv(n div n+nxcurln)], (34
where
K11:2(_3A2_282+3M3),
Kypp=2(—A;—By+Mj), (35

K3s=2(=A1=A;—B; =B+ My +My),

K13: 2A2 and K22+ K24: - (A2+ Bz_ 2M3)

This completes the tool to calculate the elastic constants in
the pseudomolecular approach we are considering. It is now  -0.1 |

sufficient to perform the integrations indicated in E(&2)—
(25) over the interaction volume of ellipsoidal shape.

IIl. NUMERICAL RESULTS
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FIG. 1. Elastic constants of a nematic liquid crystal vs the mix-

~ Let us now present the results of the numerical calculajng paramete for e=0 (spherical approximationThe splay-bend
tions employed to study the dependence of the elastic consastic constank ;5= 0 for e=7/9.

stants on the eccentricity and on the mixing factkorTo

perform the integrations to evaluate the elements of the elaggyg

tic tensors in Eqs(22)—(25) we choose the axis of the

coordinate system alon&}, In spherical coordinates this im-

plies ton-u=cosd and

u;=sinfdcos¢, u,=sinfsing, uz=cosh. (36)

The following integral is relevant:
rn(o)
I(e,0)=f J(r)yrédr
ro(0)

rN(g)efr/)\
= —Cf 5 dr
ro(0) r

e—ro(e)/)\ e—rN(ﬁ)/)\
ro(6) rn(6)
Ei( —ro(m) _Ei( —rn(6)

1

N

A A

}, (37

where Eik) is the exponential integr4llO]. The remaining

C(a2n (w
Mijka—EL fol(e,ﬁ)[ni—Secosaui]

X[n;—3ecosbu;uu,ddde. (40
From the above expressions it is possible to calculate the
coefficients A4, A,, By, By, M,, and M;. Consequently,
from the expression&35) we obtain the trend of the elastic
constants in the general fork; (e, €) in units of the positive
constantC.

In Fig. 1 the behavior oKy, Ky, and Ksz, Kq3 and
Kyt Ky, is shown as a function of the mixing facterfor
the casee=0 (spherical approximatign Several features of
this figure deserve some comments. First of all, we observe
that whene=0, which corresponds to the Maier-Saupe law,
in the spherical approximation for the interaction volume,
K11=Ky=KszzandK;3=0, as expected. On the other hand,
for e=0 but for e=1, which corresponds to the Nehring-
Saupe interaction law in the spherical approximation, we ob-
tain the well-known result thak;;=K;3<Kj,. Further-

integrations can be numerically performed and have the 9€More, for this kind of interaction law ;57 0 [3]. Notice that

eral form

C(2n (w
Bjk:—gfo fo|(e,e)[l—seco§9]ujukd9d¢,
(39

3C 27 (1
Aijk=76J0 jo |(e,0)[1—3ecos @]cosou;u;udode,
(39

the trend ofK ;5 as a function ok is nonmonotonic. In fact,
K3 starts from zerdfor e=0, i.e., Maier-Saupe interaction
law) and becomes zero again fer=7/9 [4].

However, fore#0 the three bulk elastic constants can
become distinct. One should consider that for typical rodlike
NLC molecules,e~0.9—0.95[11]. However the effective
molecular eccentricity is different from the geometrical one.
This is probably due to the presence of a hard core in which
the origin of the intermolecular interaction is localized. Ac-
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FIG. 2. The same as in Fig. 1 but fer=0.60. The bulk elastic FIG. 3. The same as in Fig. 1 f&@=0.96. This value of the
constants of splay,; and bendK ;3 become negative foe~0.9. eccentricity corresponds to a relatibrs 5a between the major and
The nonmonotonic behavior &f,5 is still present for this represen- the minor axes of the ellipsoid representing the molecular volume.
tative eccentricity. The bulk elastic constants;; and K33 can become negative as in

the preceding case of Fig. 2.

cording to this point of view the soft tai[4 1] of the nematic
molecules do not contribute to the interactions giving rise to In Fig. 3 we again observe that the two bulk elastic con-
the mesophase. Further, in the following analysis one constants become negative far~0.9. However, theK,; is
siders as representative eccentricities for the calculationsiever negative for very long molecules. In all these figures
namely,e=0.60 (Fig. 2), which is closer to these real sys- the trend ofK,,+ K, is the expected one: it is an approxi-
tems, ande=0.96 (Fig. 3), which corresponds to a relation mated linearly decreasing function ef
b=5a, i.e., a very long molecule. Another significant situation is depicted in Fig. 4 which
In Fig. 2 we observe again a known limit: whes=0 we  exhibits the trend of the elastic constants vs the eccentricity
observe thaK ;= K,,>Kas [5]. There are, however, three of the interaction volume, i.e., it corresponds to the case of
new features arising with the variation ef K3 again pre- Nehring-Saupe interaction in the ellipsoidal approximation.
sents a nonmonotonic behavior and becomes negative for We still have that whee=0 the well-known results for the
~0.9. Note that, in this case, far=1, i.e., the Nehring- Spherical approximation are recoverg®]. But two elastic
Saupe interactior ;5 is still negative. The more drastic be- constant¥,; andKs; become negative. This result indicates
havior, however, regards the bulk elastic constattsand  that the increasing in the anisotropy of the molecular volume
K 33 which become negative for similar valuesefSince the ~ works as a destabilizing effect for the nematic phase when
elastic energy density has to be a positive definite quadratithe interaction is of the induced dipole-induced dipole type.
form, this fact implies that for some particular values of the The general behavior we have presented above refers to
eccentricity (which is responsible for the “geometrical an- the case\=a,, wherea, is a typical molecular dimension
isotropy”) and of the mixing factowhich is, as stressed [see Eq.(13)]. But the global picture is not drastically af-
before, responsible for the anisotropic part of the intermofected by changing. Let us analyze, in particular, the limit
lecular interaction energythe nematic phase is not favored. A— . The behavior of the elastic constants with respeet to
Then, the molecules, for an interaction law of this kind, haveis basically the same as the one foffinite in the case de-
no tendency to align along a common direction, as is repicted in Fig. 1(i.e., the spherical approximatipnFor the
quired to form the NLC phase. This situation has been foun¢ase of the Nehring-Saupe law=£1), depicted in Fig. 4,
in this context when the considered intermolecular interacthere are no qualitative changes in the behavior of the elastic
tion law is the quadrupolar ond 3]. Finally, one observes constants and the bulk constamtg; and K3 still become
that for a “balanced” mixing of the two interaction laws, negative, but now foe=0.7. Fore=0.96, in reference to
like, for instance, fore=0.5, the three bulk elastic constants Fig. 3, these two bulk constants become negative &or
are different. This is a welcome result since from the experi==0.8 but alsoK,; becomes negative. The most significant
mental point of view the common situation is the one inchanges refer to the case-0.6. While in the case of Fig. 2
which K;; ,i=1,2,3 are distincf12]. K11 andK 33 become negative, in the limit of — oo they are
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0.20 K IV. CONCLUDING REMARKS

We have shown that new features arise in the behavior of
0.15 |- the elastic constants of a NLC when an anisotropic interac-
tion volume is introduced. The calculations were performed
by considering a special kind of mixed interaction law with a
parametefe accounting for the anisotropic part of the inter-
action law. Therefore this kind of analysis deals with two
origins for the anisotropy of the system: one coming from

@ 005 . .

= the natural anisotropic molecular form and the other one
2 from the anisotropy in the interaction. The analysis reveals
% 0.00 the possibility that for the bulkl) the elastic constants can

= become negative and in this sense the nematic phase is not
x favored;(2) it is possible to obtain the theoretical result that

-0.05 the elastic constants can be different for a representative
value of the molecular anisotropy, which is close to the ex-
perimental situation.

-0.10 For what concerns the behavior of the splay-bend elastic
constantK,3, one observes again that for some valuees of
this elastic constant can be zero. Then, the origin of the sub-

018 5 o5 1o surface deformation, if any, must be sought in another
source. It is not due only to the presence of this term. As

e stressed before, this result was already obtained in the spheri-

FIG. 4. Elastic constants of a NLC vs the eccentrigitjor cal approximation, but here it is reinforced for the ellipsoidal

=1.0 (Nehring-Saupe interaction lawNote that also for this situ- apprOX|mat|on.. .

ation the bulk elastic constants of splay and bend become negative. 1h€ Calcu_lat_'ons were numerically performed and, as ex-
pected, the limitRy— can be performed at the end of the
calculations. The outer dimension of the interaction volume

always positive for any value aof. Only K3 becomes nega- does not affect the central results.

tive for e=0.8. Finally, let us stress th#t,, and K,,+ Ky,
are not significantly changed in this limit. These results in-
dicate that for this kind of interaction law, differently from
the case of quadrupolar interactifi8], the screening of the ACKNOWLEDGMENTS

potential represented by finite is not crucial. This is not
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